Math 155, Lecture Notes- Bonds 
Name____________
Section 9.1 Sequences

A sequence is a function whose domain is the set of positive integers. It will usually be denoted with subscript notation rather than function notation. You can use your graphing calculator in “sequence mode” to plot terms and create tables that show terms in a sequence.
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An entire sequence can be denoted as 
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Ex. 2:
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Some sequences are recursively defined. 
Ex. 3:
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 is defined as 
[image: image7.emf]


   
dn+1 = dn−5










  and 
[image: image8.emf]


   d1 = 25










.

[image: image9.emf]
For the majority of the chapter, we’ll be looking at sequences that have limiting values. These sequences are said to converge.

Ex. 4:
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        This sequence converges to 0.

[image: image11.png]Definition of the Limit of a Sequence
Let L be a real number. The limit of a sequence {a,} is L, written as

lim a, =L
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if for each & > 0, there exists M > 0 such that |a, — L| < & whenevern > M.
If the limit L of a sequence exists, then the sequence converges to L. If the limit
of a sequence does not exist, then the sequence diverges.





If we plot the terms of a convergent sequence, we will see a “horizontal asymptote.” That is, we will see the sequence exhibit asymptotic behavior. 
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Ex. 5:

Given: 
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Consider 
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This sequence converges to 1.

[image: image15.png]THEOREM 9.1 Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that
lim f(x) = L.
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In other words, if a sequnce 
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 ”agrees” with a function 
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 at every positive integer, and if 
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Ex. 6:
Given:
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       Consider 
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[image: image23.png]THEOREM 9.2 Properties of Limits of Sequences
Let lim @, = L and lim b, = K.
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New Notation: Factorial !

Try working with these on your graphing calculator.
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Ex. 7:
Given: 
[image: image26.wmf]


   



an{ } =
sin n( )



n



⎧
⎨
⎪⎪⎪



⎩
⎪⎪⎪



⎫
⎬
⎪⎪⎪



⎭
⎪⎪⎪










       Consider 
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[image: image28.png]THEOREM 9.4 Absolute Value Theorem
For the sequence {a,}, if

lim |a,| =0  then lim a, = 0.
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Ex. 8:
Given: 
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       Consider 
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Ex. 9:
Given: 
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Ex. 10:
Given: 
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Ex. 11:
Given: 
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Ex. 12:
Given: 
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[image: image39.png]Definition of a Monotonic Sequence

A sequence {a,} is monotonic if its terms are nondecreasing

a1<a2<a3<-.‘<an<...
or if its terms are nonincreasing
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[image: image41.png]Definition of a Bounded Sequence
1. A sequence {a,} is bounded above if there is a real number M such that
a, < M for all n. The number M is called an upper bound of the sequence.

2. A sequence {a,} is bounded below if there is a real number N such that
N < a, for all n. The number N is called a lower bound of the sequence.

3. A sequence {a,} is bounded if it is bounded above and bounded below.
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[image: image43.png]THEOREM 9.5 Bounded Monotonic Sequences

If a sequence {a,} is bounded and monotonic, then it converges.





Ex. 13:
Given: 
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, we can see that the function is bounded above by 
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. Therefore, by Theorem 9.5, 
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 is a convergent sequence, since 
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 is bounded and monotonic for 
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Ex. 14:  The Fibonacci Sequence
Consider the sequence is defined by 
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 with 
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an{ } = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, .....{ }










       
This is the Fibonacci Sequence.
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